enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Brouwer's conjecture - Wikipedia

    en.wikipedia.org/wiki/Brouwer's_conjecture

    Brouwer has confirmed by computation that the conjecture is valid for all graphs with at most 10 vertices. [1] It is also known that the conjecture is valid for any number of vertices if t = 1, 2, n − 1, and n. For certain types of graphs, Brouwer's conjecture is known to be valid for all t and for any number of vertices

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]

  4. Brouwer–Haemers graph - Wikipedia

    en.wikipedia.org/wiki/Brouwer–Haemers_graph

    The Brouwer–Haemers graph is the first in an infinite family of Ramanujan graphs defined as generalized Paley graphs over fields of characteristic three. [2] With the 3 × 3 {\displaystyle 3\times 3} Rook's graph and the Games graph , it is one of only three possible strongly regular graphs whose parameters have the form ( ( n 2 + 3 n − 1 ...

  5. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fully equivalent definition of a strongly regular graph based on spectral graph theory: a strongly regular graph is a finite regular graph that has exactly three eigenvalues, only one of which is equal to the degree k, of multiplicity 1.

  6. Taylor diagram - Wikipedia

    en.wikipedia.org/wiki/Taylor_diagram

    One of the main limitation of the Taylor diagram is the absence of explicit information about model biases. One approach suggested by Taylor (2001) was to add lines, whose length is equal to the bias to each data point. An alternative approach, originally described by Elvidge et al., 2014 [17], is to show the bias of the models via a color ...

  7. Multifractal system - Wikipedia

    en.wikipedia.org/wiki/Multifractal_system

    Another useful multifractal spectrum is the graph of () versus (see calculations). These graphs generally rise to a maximum that approximates the fractal dimension at Q=0, and then fall. Like D Q versus Q spectra, they also show typical patterns useful for comparing non-, mono-, and multi-fractal patterns.

  8. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.

  9. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    This second branch of algebraic graph theory is related to the first, since the symmetry properties of a graph are reflected in its spectrum. In particular, the spectrum of a highly symmetrical graph, such as the Petersen graph, has few distinct values [ 1 ] (the Petersen graph has 3, which is the minimum possible, given its diameter).