Search results
Results from the WOW.Com Content Network
GalT encodes for the protein galactosyltransferase which catalyzes the transfer of a galactose sugar to an acceptor, forming a glycosidic bond. [5] GalK encodes for a kinase that phosphorylates α-D-galactose to galactose 1-phosphate. [6] Lastly, galM catalyzes the conversion of β-D-galactose to α-D-galactose as the first step in galactose ...
Galactose (/ ɡ ə ˈ l æ k t oʊ s /, galacto-+ -ose, "milk sugar"), sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. [2] It is an aldohexose and a C-4 epimer of glucose. [3] A galactose molecule linked with a glucose molecule forms a lactose molecule.
X-gal, when cleaved by β-galactosidase, yields galactose and 5-bromo-4-chloro-3-hydroxyindole - 1. The latter then spontaneously dimerizes and is oxidized into 5,5'-dibromo-4,4'-dichloro-indigo - 2, an intensely blue product which is insoluble. X-gal itself is colorless, so the presence of blue-colored product may therefore be used as a test ...
After separation from glucose, galactose travels to the liver for conversion to glucose. [12] Galactokinase uses one molecule of ATP to phosphorylate galactose. [2] The phosphorylated galactose is then converted to glucose-1-phosphate, and then eventually glucose-6-phosphate, which can be broken down in glycolysis. [2]
Uridine diphosphate (UDP)-galactose is relevant in glycolysis. UDP-galactose is the activated form of Gal, a crucial monosaccharide building block for human milk oligosaccharide (HMO). [2]
Galactose-α-1,3-galactose, commonly known as alpha gal and the Galili antigen, is a carbohydrate found in most mammalian cell membranes. It is not found in catarrhines , [ 1 ] including humans, who have lost the GGTA1 gene.
Galactosyltransferase is a type of glycosyltransferase which catalyzes the transfer of galactose. An example is B-N-acetylglucosaminyl-glycopeptide b-1,4-galactosyltransferase . The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the action of hundreds of different glycosyltransferases.
The enzyme UDP-glucose 4-epimerase (EC 5.1.3.2), also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose . [ 1 ]