enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization. m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n.

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Synonyms for GCD include greatest common factor (GCF), highest common factor (HCF), highest common divisor (HCD), and greatest common measure (GCM). The greatest common divisor is often written as gcd( a , b ) or, more simply, as ( a , b ) , [ 3 ] although the latter notation is ambiguous, also used for concepts such as an ideal in the ring of ...

  6. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  7. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.

  8. AOL Mail - AOL Help

    help.aol.com/products/aol-webmail

    Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd(p, q) = 1 means that the invertible constants are the only common divisors.