Search results
Results from the WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
Photocurrent is the electric current through a photosensitive device, such as a photodiode, as the result of exposure to radiant power.The photocurrent may occur as a result of the photoelectric, photoemissive, or photovoltaic effect.
The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p–n junction in reverse bias.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
Saturation is employed to limit current in saturable-core transformers, used in arc welding, and ferroresonant transformers which serve as voltage regulators. When the primary current exceeds a certain value, the core is pushed into its saturation region, limiting further increases in secondary current.
is the reverse saturation current, the current that flows when the diode is reverse biased (that is, is large and negative). n {\displaystyle n} is an ideality factor introduced to model a slower rate of increase than predicted by the ideal diode law.
The theory is similar to that of a single probe, except that the current is limited to the ion saturation current for both positive and negative voltages. In particular, if V b i a s {\displaystyle V_{bias}} is the voltage applied between two identical electrodes, the current is given by;