enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  3. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    The Einstein tensor is built up from the metric tensor and its partial derivatives; thus, given the stress–energy tensor, the Einstein field equations are a system of ten partial differential equations in which the metric tensor can be solved for.

  4. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    The Einstein field equations are a system of coupled, nonlinear partial differential equations. In general, this makes them hard to solve. In general, this makes them hard to solve. Nonetheless, several effective techniques for obtaining exact solutions have been established.

  5. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    Einstein's field equations: = where the Ricci curvature tensor = and the scalar curvature = relate the metric (and the associated curvature tensors) to the stress–energy tensor. This tensor equation is a complicated set of nonlinear partial differential equations for the metric components.

  6. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...

  7. Scalar field solution - Wikipedia

    en.wikipedia.org/wiki/Scalar_field_solution

    In general relativity, a scalar field solution is an exact solution of the Einstein field equation in which the gravitational field is due entirely to the field energy and momentum of a scalar field. Such a field may or may not be massless , and it may be taken to have minimal curvature coupling , or some other choice, such as conformal coupling .

  8. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The exact form of the metric g μν depends on the gravitating mass, momentum and energy, as described by the Einstein field equations. Einstein developed those field equations to match the then known laws of Nature; however, they predicted never-before-seen phenomena (such as the bending of light by gravity) that were confirmed later.

  9. Lambdavacuum solution - Wikipedia

    en.wikipedia.org/wiki/Lambdavacuum_solution

    The Einstein field equation is often written as + =, with a so-called cosmological constant term. However, it is possible to move this term to the right hand side and absorb it into the stress–energy tensor T a b {\displaystyle T^{ab}} , so that the cosmological constant term becomes just another contribution to the stress–energy tensor.