enow.com Web Search

  1. Ad

    related to: the tangent problem calculus answers

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos ⁡ x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...

  3. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th

  4. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.

  5. History of calculus - Wikipedia

    en.wikipedia.org/wiki/History_of_calculus

    Newton came to calculus as part of his investigations in physics and geometry. He viewed calculus as the scientific description of the generation of motion and magnitudes. In comparison, Leibniz focused on the tangent problem and came to believe that calculus was a metaphysical explanation of change.

  6. Hairy ball theorem - Wikipedia

    en.wikipedia.org/wiki/Hairy_ball_theorem

    A common problem in computer graphics is to generate a non-zero vector in ℝ 3 that is orthogonal to a given non-zero vector. There is no single continuous function that can do this for all non-zero vector inputs. This is a corollary of the hairy ball theorem. To see this, consider the given vector as the radius of a sphere and note that ...

  7. Method of normals - Wikipedia

    en.wikipedia.org/wiki/Method_of_normals

    In calculus, the method of normals was a technique invented by Descartes for finding normal and tangent lines to curves. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the radius of a circle is always normal to the circle itself. With this in mind Descartes would ...

  8. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is ⁠ 1 / 2 ⁠ (a + b).This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 / 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b).

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...

  1. Ad

    related to: the tangent problem calculus answers