Search results
Results from the WOW.Com Content Network
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
Bijection between 3 bit binary numbers and compositions of 4 A weak composition of an integer n is similar to a composition of n , but allowing terms of the sequence to be zero: it is a way of writing n as the sum of a sequence of non-negative integers .
Suppose one wants to determine the 5-combination at position 72. The successive values of () for n = 4, 5, 6, ... are 0, 1, 6, 21, 56, 126, 252, ..., of which the largest one not exceeding 72 is 56, for n = 8. Therefore c 5 = 8, and the remaining elements form the 4-combination at position 72 − 56 = 16. The successive values of () for n = 3 ...
The following scores (in addition to 1, 2, and 4) cannot be made from multiples of 5 and 7 and so are almost never seen in sevens: 3, 6, 8, 9, 11, 13, 16, 18 and 23. By way of example, none of these scores was recorded in any game in the 2014-15 Sevens World Series .
Dyadic number: 3: Triadic number: 4: Tetradic number: the same as dyadic number 5: Pentadic number: 6: Hexadic number: not a field: 7: Heptadic number: 8: Octadic number: the same as dyadic number 9: Enneadic number: the same as triadic number 10: Decadic number: not a field 11: Hendecadic number: 12: Dodecadic number: not a field
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
The number of such strings is the number of ways to place 10 stars in 13 positions, () = =, which is the number of 10-multisubsets of a set with 4 elements. Bijection between 3-subsets of a 7-set (left) and 3-multisets with elements from a 5-set (right).
This sum can also be found in the four outer numbers clockwise from the corners (3+8+14+9) and likewise the four counter-clockwise (the locations of four queens in the two solutions of the 4 queens puzzle [50]), the two sets of four symmetrical numbers (2+8+9+15 and 3+5+12+14), the sum of the middle two entries of the two outer columns and rows ...