Search results
Results from the WOW.Com Content Network
Chvátal (1973) observed that every cycle, and therefore every Hamiltonian graph, is 1-tough; that is, being 1-tough is a necessary condition for a graph to be Hamiltonian. He conjectured that the connection between toughness and Hamiltonicity goes in both directions: that there exists a threshold t such that every t-tough
A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.
Ore's theorem is a generalization of Dirac's theorem that, when each vertex has degree at least n/2, the graph is Hamiltonian. For, if a graph meets Dirac's condition, then clearly each pair of vertices has degrees adding to at least n. In turn Ore's theorem is generalized by the Bondy–Chvátal theorem.
Barnette's conjecture is an unsolved problem in graph theory, a branch of mathematics, concerning Hamiltonian cycles in graphs. It is named after David W. Barnette , a professor emeritus at the University of California, Davis ; it states that every bipartite polyhedral graph with three edges per vertex has a Hamiltonian cycle.
A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices are connected with arrows and the edges traced "tail-to-head").
The Hamiltonian completion problem is to find the minimal number of edges to add to a graph to make it Hamiltonian. The problem is clearly NP-hard in the general case (since its solution gives an answer to the NP-complete problem of determining whether a given graph has a Hamiltonian cycle ).
A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.
Another version of Lovász conjecture states that . Every finite connected vertex-transitive graph contains a Hamiltonian cycle except the five known counterexamples.. There are 5 known examples of vertex-transitive graphs with no Hamiltonian cycles (but with Hamiltonian paths): the complete graph, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter ...