Search results
Results from the WOW.Com Content Network
A gene cluster is a group of two or more genes found within an organism's DNA that encode similar polypeptides or proteins which collectively share a generalized function and are often located within a few thousand base pairs of each other.
An image of multiple chromosomes, taken from many cells. Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. [1] [2] It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems.
A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.
A gene family is a set of several similar genes, formed by duplication of a single original gene, and generally with similar biochemical functions. One such family are the genes for human hemoglobin subunits; the ten genes are in two clusters on different chromosomes, called the α-globin and β-globin loci.
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
A putative gene is an alignment segment of DNA that is believed to be a gene.Putative genes can share sequence similarities to already characterized genes and thus can be inferred to share a similar function, yet the exact function of putative genes remains unknown. [1]
DNA contains the genetic information that allows all forms of life to function, grow and reproduce. However, it is unclear how long in the 4-billion-year history of life DNA has performed this function, as it has been proposed that the earliest forms of life may have used RNA as their genetic material.
The same Hox protein can act as a repressor at one gene and an activator at another. The ability of Hox proteins to bind DNA is conferred by a part of the protein referred to as the homeodomain. The homeodomain is a 60-amino-acid-long DNA-binding domain (encoded by its corresponding 180-base-pair DNA sequence, the homeobox