enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    An increase in energy level from E 1 to E 2 resulting from absorption of a photon represented by the red squiggly arrow, and whose energy is h ν. A decrease in energy level from E 2 to E 1 resulting in emission of a photon represented by the red squiggly arrow, and whose energy is h ν.

  3. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Consider two states of the hydrogen atom: State n = 1, ℓ = 0, m ℓ = 0 and m s = + ⁠ 1 / 2 ⁠ State n = 2, ℓ = 0, m ℓ = 0 and m s = − ⁠ 1 / 2 ⁠ By quantum theory, state 1 has a fixed energy of E 1, and state 2 has a fixed energy of E 2. Now, what would happen if an electron in state 1 were to move to state 2?

  4. Caesium standard - Wikipedia

    en.wikipedia.org/wiki/Caesium_standard

    The simultaneous presence of electron spin and nuclear spin leads, by a mechanism called hyperfine interaction, to a (small) splitting of all energy levels into two sub-levels. One of the sub-levels corresponds to the electron and nuclear spin being parallel (i.e., pointing in the same direction), leading to a total spin F equal to F = 7/2 + 1/ ...

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below). The first excited state is obtained by promoting a 3s electron to the 3p subshell, to obtain the 1s 2 2s 2 2p 6 3p 1 configuration, abbreviated as the 3p level. Atoms can move from one configuration to ...

  6. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.

  7. Atomic energy - Wikipedia

    en.wikipedia.org/wiki/Atomic_energy

    Nuclear binding energy, the energy required to split a nucleus of an atom. Nuclear potential energy , the potential energy of the particles inside an atomic nucleus. Nuclear reaction , a process in which nuclei or nuclear particles interact, resulting in products different from the initial ones; see also nuclear fission and nuclear fusion .

  8. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    In a simplistic one-electron model described below, the total energy of an electron is a negative inverse quadratic function of the principal quantum number n, leading to degenerate energy levels for each n > 1. [1] In more complex systems—those having forces other than the nucleus–electron Coulomb force—these levels split.

  9. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagrams are diagrams of molecular orbital (MO) energy levels, shown as short horizontal lines in the center, flanked by constituent atomic orbital (AO) energy levels for comparison, with the energy levels increasing from the bottom to the top. Lines, often dashed diagonal lines, connect MO levels with their constituent AO levels.