enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...

  3. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Since linear motion is a motion in a single dimension, the distance traveled by an object in particular direction is the same as displacement. [4] The SI unit of displacement is the metre . [ 5 ] [ 6 ] If x 1 {\displaystyle x_{1}} is the initial position of an object and x 2 {\displaystyle x_{2}} is the final position, then mathematically the ...

  4. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    Boltzmann-like equations are also used for the movement of cells. [24] [25] Since cells are composite particles that carry internal degrees of freedom, the corresponding generalized Boltzmann equations must have inelastic collision integrals. Such equations can describe invasions of cancer cells in tissue, morphogenesis, and chemotaxis-related ...

  5. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  6. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    This linear acceleration a along the red axis can be related to the change in angle θ by the arc length formulas; s is arc length: =, = =, = =, thus: = ⁡, + ⁡ = "Torque" derivation of ( Eq. 1 ) Equation (1) can be obtained using two definitions for torque.

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  8. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.

  9. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,