Search results
Results from the WOW.Com Content Network
The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon. A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or ...
On the other hand, one can affirm with certainty that "if someone does not live in California" (non-Q), then "this person does not live in San Diego" (non-P). This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2. If an animal is a dog, then it has four legs. My cat has ...
A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, If P, then Q. P. ∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent.
An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring.
For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q , or the falsity of Q ensures the falsity of P .) [ 1 ] Similarly, P is sufficient for Q , because P being true always implies that Q is true, but P not being ...
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis. [1] Examples: If , then . This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or bidirectional implication or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...