enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph isomorphism - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism

    A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be determined in polynomial time is a major unsolved problem in computer science, known as the graph isomorphism problem. [1] [2] The two graphs shown below are isomorphic, despite their different looking drawings.

  3. Graph isomorphism problem - Wikipedia

    en.wikipedia.org/wiki/Graph_isomorphism_problem

    At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently. [ 3 ] [ 4 ] This problem is a special case of the subgraph isomorphism problem , [ 5 ] which asks whether a given graph G contains a subgraph that is isomorphic to another given ...

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. An important unsolved problem in complexity theory is whether the graph isomorphism problem is in P, NP-complete, or NP-intermediate. The answer is not known, but it is believed that the problem is at least not NP-complete. [20]

  6. Self-complementary graph - Wikipedia

    en.wikipedia.org/wiki/Self-complementary_graph

    Graph A is isomorphic to its complement. In the mathematical field of graph theory, a self-complementary graph is a graph which is isomorphic to its complement. The simplest non-trivial self-complementary graphs are the 4-vertex path graph and the 5-vertex cycle graph. There is no known characterization of self-complementary graphs.

  7. Isomorphism - Wikipedia

    en.wikipedia.org/wiki/Isomorphism

    Examples of isomorphism classes are plentiful in mathematics. Two sets are isomorphic if there is a bijection between them. The isomorphism class of a finite set can be identified with the non-negative integer representing the number of elements it contains.

  8. Homeomorphism (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Homeomorphism_(graph_theory)

    In graph theory, two graphs and ′ are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of ′.If the edges of a graph are thought of as lines drawn from one vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphic in the ...

  9. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).