Search results
Results from the WOW.Com Content Network
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
Ultrasound attenuation is frequency-dependent: higher frequencies are attenuated faster with increasing depth. Selecting ultrasound detectors that are most sensitive at the appropriate frequency can improve sensitivity at the target imaging depth, but at the cost of spatial resolution.
For frequencies of ultrasound from 25 to 50 kHz, a guideline of 110 dB had been recommended by Canada, Japan, the USSR, and the International Radiation Protection Agency, and 115 dB by Sweden [24] in the late 1970s to early 1980s, but these were primarily based on subjective effects. The more recent OSHA guidelines above are based on ACGIH ...
By calculating the frequency shift of a particular sample volume, for example, flow in an artery or a jet of blood flow over a heart valve, its speed and direction can be determined and visualized. Duplex ultrasonography sometimes refers to Doppler ultrasonography or spectral Doppler ultrasonography. [ 3 ]
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
The pre-bifurcation length from the measurement point would be given by D 4 = wavelength/32 = cf 4 /32 = 3.5 cm and a frequency f 4 of 4.92 Hz. The calculated distance approximates that of the segment of MCA main stem just after the carotid bifurcation, where probably the ultrasound sample volume was placed, to the MCA bifurcation.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...