enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...

  3. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  4. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Lorentz factor as a function of speed (in natural units where c = 1). Notice that for small speeds (as v tends to zero), γ is approximately 1. In addition to the light clock used above, the formula for time dilation can be more generally derived from the temporal part of the Lorentz transformation. [28]

  5. Kaufmann–Bucherer–Neumann experiments - Wikipedia

    en.wikipedia.org/wiki/Kaufmann–Bucherer...

    Neumann concluded that his experiments were in agreement with those of Bucherer and Hupka, definitely proving the Lorentz–Einstein formula in the range 0.4–0.7c, and refuted Abraham's formula. Instrumental uncertainties occurred in the range 0.7–0.8c, so the deviation from the Lorentz–Einstein formula in this range wasn't considered as ...

  6. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = ⁠ 8 / 3 ⁠ The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions.

  7. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location.

  8. Proper velocity - Wikipedia

    en.wikipedia.org/wiki/Proper_velocity

    For example, proper velocity equals momentum per unit mass at any speed, and therefore has no upper limit. At high speeds, as shown in the figure at right, it is proportional to an object's energy as well. Proper velocity w can be related to the ordinary velocity v via the Lorentz factor γ:

  9. Beam emittance - Wikipedia

    en.wikipedia.org/wiki/Beam_emittance

    The angle ′ = in the prior definition has been replaced with the normalized transverse momentum =, where is the Lorentz factor and = / is the normalized transverse velocity. Normalized emittance is related to the previous definitions of emittance through γ {\displaystyle \gamma } and the normalized velocity in the direction of the beam's ...