Search results
Results from the WOW.Com Content Network
The Whittaker–Shannon interpolation formula can be used if the number of data points is infinite or if the function to be interpolated has compact support. Sometimes, we know not only the value of the function that we want to interpolate, at some points, but also its derivative. This leads to Hermite interpolation problems.
A Lozenge diagram is a diagram that is used to describe different interpolation formulas that can be constructed for a given data set. A line starting on the left edge and tracing across the diagram to the right can be used to represent an interpolation formula if the following rules are followed: [6]
) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...
Brahmagupta's interpolation formula — seventh-century formula for quadratic interpolation; Extensions to multiple dimensions: Bilinear interpolation; Trilinear interpolation; Bicubic interpolation; Tricubic interpolation; Padua points — set of points in R 2 with unique polynomial interpolant and minimal growth of Lebesgue constant; Hermite ...
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
Radial basis function (RBF) interpolation is an advanced method in approximation theory for constructing high-order accurate interpolants of unstructured data, possibly in high-dimensional spaces. The interpolant takes the form of a weighted sum of radial basis functions .
The problem of generating a function whose graph passes through a given set of function values is called interpolation. This interpolation formula is named after the Danish mathematician Thorvald N. Thiele. It is expressed as a continued fraction, where ρ represents the reciprocal difference: