Search results
Results from the WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter
For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric
In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform.
The heterogeneity variance is commonly denoted by τ², or the standard deviation (its square root) by τ. Heterogeneity is probably most readily interpretable in terms of τ, as this is the heterogeneity distribution's scale parameter, which is measured in the same units as the overall effect itself. [18]
A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written (,) = (,), where f and g are homogeneous functions of the same degree of x and y. [1] In this case, the change of variable y = ux leads to an equation of the form
The equation = is an equation of a line in the projective plane (see definition of a line in the projective plane), and is called the line at infinity. The equivalence classes, , are the lines through the origin with the origin removed. The origin does not really play an essential part in the previous discussion so it can be added back in ...
A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective ...