Search results
Results from the WOW.Com Content Network
Stress–strain curve for brittle materials compared to ductile materials. It is possible to distinguish some common characteristics among the stress–strain curves of various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
Toughness is related to the area under the stress–strain curve.In order to be tough, a material must be both strong and ductile. For example, brittle materials (like ceramics) that are strong but with limited ductility are not tough; conversely, very ductile materials with low strengths are also not tough.
An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity. There are several mathematical descriptions of plasticity. [12] One is deformation theory (see e.g. Hooke's law) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor ...
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
Yield Point Elongation (YPE) significantly impacts the usability of steel. In the context of tensile testing and the engineering stress-strain curve, the Yield Point is the initial stress level, below the maximum stress, at which an increase in strain occurs without an increase in stress.
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...
The strain can be decomposed into a recoverable elastic strain and an inelastic strain (). The stress at initial yield is σ 0 {\displaystyle \sigma _{0}} . For strain hardening materials (as shown in the figure) the yield stress increases with increasing plastic deformation to a value of σ y {\displaystyle \sigma _{y}} .
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...