enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Betz's law - Wikipedia

    en.wikipedia.org/wiki/Betz's_law

    The power coefficient [9] C P (= P/P wind) is the dimensionless ratio of the extractable power P to the kinetic power P wind available in the undistributed stream. [ citation needed ] It has a maximum value C P max = 16/27 = 0.593 (or 59.3%; however, coefficients of performance are usually expressed as a decimal, not a percentage).

  3. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    However, very high tip speeds also increase the drag on the blades, decreasing power production. Balancing these factors is what leads to most modern horizontal-axis wind turbines running at a tip speed ratio around 9. In addition, wind turbines usually limit the tip speed to around 80-90m/s due to leading edge erosion and high noise levels.

  4. Tip-speed ratio - Wikipedia

    en.wikipedia.org/wiki/Tip-speed_ratio

    The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual speed of the wind, v. The tip-speed ratio is related to efficiency, with the optimum varying with blade design. [1] Higher tip speeds result in higher noise levels and require stronger blades due to larger centrifugal ...

  5. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by

  6. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    The ratio between these two coefficients is the thickness ratio: C L , m a r ≡ c t C L , a e r {\displaystyle C_{\mathrm {L} ,\,mar}\equiv {\frac {c}{t}}C_{\mathrm {L} ,\,aer}} The lift coefficient can be approximated using the lifting-line theory , [ 4 ] numerically calculated or measured in a wind tunnel test of a complete aircraft ...

  7. Wind turbine design - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine_design

    An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The wind profile power law relationship is = where is the wind speed (in metres per second) at height (in metres), and is the known wind speed at a reference height .The exponent is an empirically derived coefficient that varies dependent upon the stability of the atmosphere.