Search results
Results from the WOW.Com Content Network
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which provide a comprehensive description of the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
The bootstrap distribution of a point estimator of a population parameter has been used to produce a bootstrapped confidence interval for the parameter's true value if the parameter can be written as a function of the population's distribution. Population parameters are estimated with many point estimators.
In statistics, a population is a set of similar items or events which is of interest for some question or experiment. [1] [2] A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of ...
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.
Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.
When sampling from a finite population without replacement, this may cause dependence between individual samples. To correct for this dependence when calculating the sample variance, a finite population correction (or finite population multiplier) of (N-n)/(N-1) may be used. If the sampling fraction is small, less than 0.05, then the sample ...