enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour).

  3. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that

  4. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    In a dispersive medium, the phase speed itself depends upon the frequency of the wave, making the relationship between wavelength and frequency nonlinear. In the case of electromagnetic radiation—such as light—in free space, the phase speed is the speed of light, about 3 × 10 8 m/s.

  5. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that a narrow pulse will become an extended pulse, i.e., be dispersed.

  6. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons . Each has an energy related to the frequency of the wave given by Planck's relation E = hf , where E is the energy of the photon, h is the Planck constant , 6.626 × 10 −34 J·s, and f is the frequency ...

  7. Light - Wikipedia

    en.wikipedia.org/wiki/Light

    The speed of light in vacuum is defined to be exactly 299 792 458 m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum.

  8. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1.Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  9. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]