enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  3. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 2 1 is a 180° (twofold) rotation followed by a translation of ⁠ 1 / 2 ⁠ of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of ⁠ 1 / 3 ⁠ of ...

  4. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices.

  5. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:

  6. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.

  7. Law of symmetry (crystallography) - Wikipedia

    en.wikipedia.org/wiki/Law_of_symmetry...

    The modern definition of the law of symmetry is based on symmetry elements, and is more in the German dynamistic [1] crystallographic tradition of Christian Samuel Weiss, Moritz Ludwig Frankenheim and Johann F. C. Hessel. Weiss and his followers studied the external symmetry of crystals rather than their internal structure.

  8. Hexagonal lattice - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_lattice

    The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...

  9. Lattice plane - Wikipedia

    en.wikipedia.org/wiki/Lattice_plane

    In crystallography, a lattice plane of a given Bravais lattice is any plane containing at least three noncollinear Bravais lattice points. Equivalently, a lattice plane is a plane whose intersections with the lattice (or any crystalline structure of that lattice) are periodic (i.e. are described by 2d Bravais lattices). [1]