Search results
Results from the WOW.Com Content Network
The thermodynamic square (also known as the thermodynamic wheel, Guggenheim scheme or Born square) is a mnemonic diagram attributed to Max Born and used to help determine thermodynamic relations. Born presented the thermodynamic square in a 1929 lecture. [1] The symmetry of thermodynamics appears in a paper by F.O. Koenig. [2]
The thermodynamic square can be used as a mnemonic to recall and derive these relations. The usefulness of these relations lies in their quantifying entropy changes, which are not directly measurable, in terms of measurable quantities like temperature, volume, and pressure.
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and ...
The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables. In the above description, the product of two conjugate variables yields an energy. In other words, the conjugate pairs are conjugate with respect to energy.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
The thermodynamic square can be used as a tool to recall and derive some of the potentials. Just as in mechanics , where potential energy is defined as capacity to do work, similarly different potentials have different meanings like the below:
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.
The thermodynamic definition of temperature is due to Kelvin. ... is the root-mean-square speed. [86] This direct proportionality between temperature and mean ...