Search results
Results from the WOW.Com Content Network
The Nursing Minimum Data Set (NMDS) is a classification system which allows for the standardized collection of essential nursing data. The collected data are meant to provide an accurate description of the nursing process used when providing nursing care. The NMDS allow for the analysis and comparison of nursing data across populations ...
NRI attempts to quantify how well a new model correctly reclassifies subjects. Typically this comparison is between an original model (e.g. hip fractures as a function age and sex) and a new model which is the original model plus one additional component (e.g. hip fractures as a function of age, sex, and a genetic or proteomic biomarker).
The influences of individual data values on the estimation of a coefficient are easy to see in this plot. It is easy to see many kinds of failures of the model or violations of the underlying assumptions (nonlinearity, heteroscedasticity, unusual patterns). . Partial regression plots are related to, but distinct from, partial residual plots.
IBM sells the version of SPSS Modeler 18.2.1 in two separate bundles of features. These two bundles are called "editions" by IBM: SPSS Modeler Professional: used for structured data, such as databases, mainframe data systems, flat files or BI systems; SPSS Modeler Premium: Includes all the features of Modeler Professional, with the addition of:
Compact Letter Display (CLD) is a statistical method to clarify the output of multiple hypothesis testing when using the ANOVA and Tukey's range tests. CLD can also be applied following the Duncan's new multiple range test (which is similar to Tukey's range test).
Another common situation in which robust estimation is used occurs when the data contain outliers. In the presence of outliers that do not come from the same data-generating process as the rest of the data, least squares estimation is inefficient and can be biased. Because the least squares predictions are dragged towards the outliers, and ...
MCA is performed by applying the CA algorithm to either an indicator matrix (also called complete disjunctive table – CDT) or a Burt table formed from these variables. [citation needed] An indicator matrix is an individuals × variables matrix, where the rows represent individuals and the columns are dummy variables representing categories of the variables. [1]
The F-test in ANOVA is an example of an omnibus test, which tests the overall significance of the model. A significant F test means that among the tested means, at least two of the means are significantly different, but this result doesn't specify exactly which means are different one from the other.