enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    Flexural rigidity is defined as the force couple required to bend a fixed non-rigid structure by one unit of curvature, or as the resistance offered by a structure while undergoing bending. Flexural rigidity of a beam

  3. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    where is the deflection of the beam and is the distance along the beam. Double integration of the above equation leads to computing the deflection of the beam, and in turn, the bending stiffness of the beam. Bending stiffness in beams is also known as Flexural rigidity.

  4. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  5. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    The four-point flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test .

  6. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    is the elastic modulus and is the second moment of area, the product of these giving the flexural rigidity of the beam. This equation is very common in engineering practice: it describes the deflection of a uniform, static beam. Successive derivatives of have important meanings:

  8. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    For example, a point on a horizontal beam can undergo both a vertical displacement and a rotation relative to its undeformed axis. When there are degrees of freedom a matrix must be used to describe the stiffness at the point. The diagonal terms in the matrix are the direct-related stiffnesses (or simply stiffnesses) along the same degree of ...

  9. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The moment distribution method is a structural analysis method for statically indeterminate beams and frames developed by Hardy Cross. It was published in 1930 in an ASCE journal. [1] The method only accounts for flexural effects and ignores axial and shear effects.