enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ionic potential - Wikipedia

    en.wikipedia.org/wiki/Ionic_potential

    Ionic potential is the ratio of the electrical charge (z) to the radius (r) of an ion. [1]= = As such, this ratio is a measure of the charge density at the surface of the ion; usually the denser the charge, the stronger the bond formed by the ion with ions of opposite charge.

  3. Specific ion interaction theory - Wikipedia

    en.wikipedia.org/wiki/Specific_ion_interaction...

    In theoretical chemistry, Specific ion Interaction Theory (SIT theory) is a theory used to estimate single-ion activity coefficients in electrolyte solutions at relatively high concentrations. [ 1 ] [ 2 ] It does so by taking into consideration interaction coefficients between the various ions present in solution.

  4. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, [1] and is the primary interaction occurring in ionic compounds.

  5. Cation-anion radius ratio - Wikipedia

    en.wikipedia.org/wiki/Cation-anion_radius_ratio

    In condensed matter physics and inorganic chemistry, the cation-anion radius ratio can be used to predict the crystal structure of an ionic compound based on the relative size of its atoms. It is defined as the ratio of the ionic radius of the positively charged cation to the ionic radius of the negatively charged anion in a cation-anion ...

  6. Madelung constant - Wikipedia

    en.wikipedia.org/wiki/Madelung_constant

    The electrical charge of the Na + and Cl − ion are assumed to be onefold positive and negative, respectively, z Na = 1 and z Cl = –1. The nearest neighbour distance amounts to half the lattice constant of the cubic unit cell r 0 = a 2 {\displaystyle r_{0}={\tfrac {a}{2}}} and the Madelung constants become

  7. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  8. Pauling's principle of electroneutrality - Wikipedia

    en.wikipedia.org/wiki/Pauling's_principle_of...

    Using the electroneutrality principle the assumption is made that the Co-N bond will have 50% ionic character thus resulting in a zero charge on the cobalt atom. Due to the difference in electronegativity the N-H bond would 17% ionic character and therefore a charge of 0.166 on each of the 18 hydrogen atoms.

  9. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    Finally, Kapustinskii noted that the Madelung constant, M, was approximately 0.88 times the number of ions in the empirical formula. [2] The derivation of the later form of the Kapustinskii equation followed similar logic, starting from the quantum chemical treatment in which the final term is 1 − ⁠ d / r 0 ⁠ where d is as defined

  1. Related searches calculating capital efficiency equation chemistry worksheet 1 ionic bonding

    how to calculate ionic bondhow to form ionic bonds
    ionic potential formula