enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The de Broglie wavelength is the wavelength, λ, associated with a particle with momentum p through the Planck constant, h: =. Wave-like behavior of matter has been experimentally demonstrated, first for electrons in 1927 and for other elementary particles , neutral atoms and molecules in the years since.

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The de Broglie relation, [10] [11] [12] also known as de Broglie's momentumwavelength relation, [4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = ⁠ h / p ⁠.

  4. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency

  5. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    The colour opacity of the particles corresponds to the probability density of finding the particle with position x or momentum component p. Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x.

  6. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum. Wavenumber can be used to specify quantities other than spatial frequency. For example, in optical spectroscopy, it is often used as a unit of temporal frequency assuming a certain speed of light.

  7. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  8. Thermal de Broglie wavelength - Wikipedia

    en.wikipedia.org/wiki/Thermal_de_Broglie_wavelength

    In physics, the thermal de Broglie wavelength (, sometimes also denoted by ) is a measure of the uncertainty in location of a particle of thermodynamic average momentum in an ideal gas. [1] It is roughly the average de Broglie wavelength of particles in an ideal gas at the specified temperature.

  9. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.

  1. Related searches relation between wavelength and momentum examples questions physics and applications

    difference between frequency and momentumhow to find matter wave
    momentum eigenstate