Search results
Results from the WOW.Com Content Network
Set Theory: An Introduction to Independence Proofs is a textbook and reference work in set theory by Kenneth Kunen. It starts from basic notions, including the ZFC axioms, and quickly develops combinatorial notions such as trees , Suslin's problem , , and Martin's axiom .
Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. [1] Originally published by Van Nostrand in 1960, [ 2 ] it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974.
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
First published in April 1914, Grundzüge der Mengenlehre was the first comprehensive introduction to set theory. In addition to the systematic treatment of known results in set theory, the book also contains chapters on measure theory and topology, which were then still considered parts of set theory. Hausdorff presented and developed original ...
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Pocket set theory (PST) is an alternative set theory in which there are only two infinite cardinal numbers, ℵ 0 (aleph-naught, the cardinality of the set of all natural numbers) and c (the cardinality of the continuum). The theory was first suggested by Rudy Rucker in his Infinity and the Mind. [1]
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.