enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region ...

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 1/3 rule. Simpson's 1/3 rule, also simply called Simpson's rule, is a method for numerical integration proposed by Thomas Simpson. It is based upon a quadratic interpolation and is the composite Simpson's 1/3 rule evaluated for . Simpson's 1/3 rule is as follows: where is the step size for .

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f−1 (x) when the integral of the function f (x) is known. Indeed, the functions x (y) and y (x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  5. Monte Carlo integration - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_integration

    An illustration of Monte Carlo integration. In this example, the domain D is the inner circle and the domain E is the square. Because the square's area (4) can be easily calculated, the area of the circle (π*1.0 2) can be estimated by the ratio (0.8) of the points inside the circle (40) to the total number of points (50), yielding an approximation for the circle's area of 4*0.8 = 3.2 ≈ π.

  6. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    Integral of the Gaussian function, equal to sqrt (π) A graph of the function and the area between it and the -axis, (i.e. the entire real line) which is equal to . The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl ...

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure (quadrature or squaring), as in the quadrature of the circle. The term is also sometimes used to describe the numerical solution of differential equations.

  8. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    e. In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions.

  9. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    t. e. In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics ...