enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16, and the exponent uses 5 bits. This can express values in the range ...

  3. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) ... The 16-bit format is intended for the exchange or storage of small numbers (e.g., for graphics).

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...

  5. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 (brain floating point) [1] [2] floating-point format is a computer number format occupying 16 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. This format is a shortened (16-bit) version of the 32-bit IEEE 754 single-precision floating-point format (binary32) with the ...

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Minifloats with 16 bits are half-precision numbers (opposed to single and double precision). There are also minifloats with 8 bits or even fewer. [2]

  7. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    A common usage of mixed-precision arithmetic is for operating on inaccurate numbers with a small width and expanding them to a larger, more accurate representation. For example, two half-precision or bfloat16 (16-bit) floating-point numbers may be multiplied together to result in a more accurate single-precision (32-bit) float. [1]

  8. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Some operations of floating-point arithmetic are invalid, such as taking the square root of a negative number. The act of reaching an invalid result is called a floating-point exception. An exceptional result is represented by a special code called a NaN, for "Not a Number". All NaNs in IEEE 754-1985 have this format: sign = either 0 or 1.

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...