enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    The second hydrogen bond in A:T base pairs involves the N6 amino group of adenine and the O4 atom of thymine (or uracil in RNA). Similarly, the second hydrogen bond in G:C base pairs involves O6 atom and N4 amino group of guanine and cytosine, respectively.

  3. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    It has sites for amino acid attachment and an anticodon region for codon recognition that binds to a specific sequence on the messenger RNA chain through hydrogen bonding. [32] A diagram of how mRNA is used to create polypeptide chains. Ribosomal RNA (rRNA) is the catalytic component of the ribosomes. The rRNA is the component of the ribosome ...

  4. Base pair - Wikipedia

    en.wikipedia.org/wiki/Base_pair

    The GU pairing, with two hydrogen bonds, does occur fairly often in RNA (see wobble base pair). Paired DNA and RNA molecules are comparatively stable at room temperature, but the two nucleotide strands will separate above a melting point that is determined by the length of the molecules, the extent of mispairing (if any), and the GC content.

  5. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    The ribose zipper is an RNA tertiary structural element in which two RNA chains are held together by hydrogen bonding interactions involving the 2’OH of ribose sugars on different strands. The 2'OH can behave as both hydrogen bond donor and acceptor, which allows formation of bifurcated hydrogen bonds with another 2’ OH. [46] [47]

  6. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    Alternate hydrogen bonding patterns, such as the wobble base pair and Hoogsteen base pair, also occur—particularly in RNA—giving rise to complex and functional tertiary structures. Importantly, pairing is the mechanism by which codons on messenger RNA molecules are recognized by anticodons on transfer RNA during protein translation .

  7. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as ...

  8. Hoogsteen base pair - Wikipedia

    en.wikipedia.org/wiki/Hoogsteen_base_pair

    Hoogsteen pointed out that if the alternative hydrogen-bonding patterns were present in DNA, then the double helix would have to assume a quite different shape. Hoogsteen base pairs are observed in alternative structures such as the four-stranded G-quadruplex structures that form in DNA and RNA.

  9. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    A tetraloop is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA: UNCG, GNRA, and CUUG (N is one of the four nucleotides and R is a purine). UNCG is the most stable tetraloop. [9] Pseudoknot is an RNA secondary structure first identified in turnip yellow mosaic virus. [10]