Search results
Results from the WOW.Com Content Network
The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.
The Pauli matrices are a vector of three 2×2 matrices that are used as spin operators. Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented ...
Heuristic depiction of spin angular momentum cones for a spin- 1 / 2 particle. Spin- 1 / 2 objects are all fermions (a fact explained by the spin–statistics theorem) and satisfy the Pauli exclusion principle. Spin- 1 / 2 particles can have a permanent magnetic moment along the direction of their spin, and this magnetic ...
The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2).
For a nonrelativistic spin-1/2 particle of mass m, a representation of the time-independent Lévy-Leblond equation reads: [1] {+ = + =where c is the speed of light, E is the nonrelativistic particle energy, = is the momentum operator, and = (,,) is the vector of Pauli matrices, which is proportional to the spin operator =.
Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, which can be represented in terms of the Pauli matrices.
Suppose there is a spin 1/2 particle in a state = [].To determine the probability of finding the particle in a spin up state, we simply multiply the state of the particle by the adjoint of the eigenspinor matrix representing spin up, and square the result.
Atoms can have different overall spin, which determines whether they are fermions or bosons: for example, helium-3 has spin 1/2 and is therefore a fermion, whereas helium-4 has spin 0 and is a boson. [2]: 123–125 The Pauli exclusion principle underpins many properties of everyday matter, from its large-scale stability to the chemical behavior ...