enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. Hence, blood with high carbon dioxide levels is also lower in pH (more acidic). Hemoglobin can bind protons and carbon dioxide, which causes a conformational change in the protein and facilitates the release of oxygen.

  3. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygenhemoglobin...

    The oxygenhemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for ...

  4. Haldane effect - Wikipedia

    en.wikipedia.org/wiki/Haldane_effect

    In addition to enhancing removal of carbon dioxide from oxygen-consuming tissues, the Haldane effect promotes dissociation of carbon dioxide from hemoglobin in the presence of oxygen. In the oxygen-rich capillaries of the lung, this property causes the displacement of carbon dioxide to plasma as low-oxygen blood enters the alveolus and is vital ...

  5. Heme - Wikipedia

    en.wikipedia.org/wiki/Heme

    Binding of oxygen to a heme prosthetic group. Heme (American English), or haem (Commonwealth English, both pronounced /hi:m/ HEEM), is a ring-shaped iron-containing molecular component of hemoglobin, which is necessary to bind oxygen in the bloodstream. It is composed of four pyrrole rings with 2 vinyl and 2 propionic acid side chains. [1]

  6. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    The Bohr effect increases the efficiency of oxygen transportation through the blood. After hemoglobin binds to oxygen in the lungs due to the high oxygen concentrations, the Bohr effect facilitates its release in the tissues, particularly those tissues in most need of oxygen. When a tissue's metabolic rate increases, so does its carbon dioxide ...

  7. Dioxygen in biological reactions - Wikipedia

    en.wikipedia.org/wiki/Dioxygen_in_biological...

    After being carried in blood to a body tissue in need of oxygen, O 2 is handed off from the heme group to monooxygenase, an enzyme that also has an active site with an atom of iron. [9] Monooxygenase uses oxygen for many oxidation reactions in the body. Oxygen that is suspended in the blood plasma equalizes into the tissue according to Henry's law.

  8. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    During recovery, when oxygen becomes available, NAD + attaches to hydrogen from lactate to form ATP. In yeast, the waste products are ethanol and carbon dioxide. This type of fermentation is known as alcoholic or ethanol fermentation. The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen.

  9. Blood - Wikipedia

    en.wikipedia.org/wiki/Blood

    Hemoglobin has an oxygen binding capacity between 1.36 and 1.40 ml O 2 per gram hemoglobin, [23] which increases the total blood oxygen capacity seventyfold, [24] compared to if oxygen solely were carried by its solubility of 0.03 ml O 2 per liter blood per mm Hg partial pressure of oxygen (about 100 mm Hg in arteries).