Search results
Results from the WOW.Com Content Network
The most efficient method known to solve the RSA problem is by first factoring the modulus N, a task believed to be impractical if N is sufficiently large (see integer factorization). The RSA key setup routine already turns the public exponent e , with this prime factorization, into the private exponent d , and so exactly the same algorithm ...
The factoring challenge was intended to track the cutting edge in integer factorization. A primary application is for choosing the key length of the RSA public-key encryption scheme. Progress in this challenge should give an insight into which key sizes are still safe and for how long. As RSA Laboratories is a provider of RSA-based products ...
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
To factorize the initial polynomial, it suffices to factorize each square-free factor. Square-free factorization is therefore the first step in most polynomial factorization algorithms. Yun's algorithm extends this to the multivariate case by considering a multivariate polynomial as a univariate polynomial over a polynomial ring.
Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...
Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).
In mathematics, Sophie Germain's identity is a polynomial factorization named after Sophie Germain stating that + = ((+) +) (() +) = (+ +) (+). Beyond its use in elementary algebra, it can also be used in number theory to factorize integers of the special form +, and it frequently forms the basis of problems in mathematics competitions.
The square-free factorization of a polynomial p is a factorization = where each is either 1 or a polynomial without multiple roots, and two different do not have any common root. An efficient method to compute this factorization is Yun's algorithm .