Search results
Results from the WOW.Com Content Network
Caltech Tutorial on Relativity — A simple introduction to Einstein's Field Equations. The Meaning of Einstein's Equation — An explanation of Einstein's field equation, its derivation, and some of its consequences; Video Lecture on Einstein's Field Equations by MIT Physics Professor Edmund Bertschinger. Arch and scaffold: How Einstein found ...
The term was coined by Albert Einstein, [3] who attempted to unify his general theory of relativity with electromagnetism. Einstein attempted to create a classical unified field theory, rejecting quantum mechanics. Among other difficulties, this required a new explanation of particles as singularities or solitons instead of field quanta.
Einstein discussed his idea with mathematician Marcel Grossmann and they concluded that general relativity could be formulated in the context of Riemannian geometry which had been developed in the 1800s. [10] In 1915, he devised the Einstein field equations which relate the curvature of spacetime with the mass, energy, and any momentum within it.
The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the ...
Next, notice that only 10 of the original 14 equations are independent, because the continuity equation ; = is a consequence of Einstein's equations. This reflects the fact that the system is gauge invariant (in general, absent some symmetry, any choice of a curvilinear coordinate net on the same system would correspond to a numerically ...
The cosmological constant was originally introduced in Einstein's 1917 paper entitled “The cosmological considerations in the General Theory of Reality”. [2] Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe: gravity would cause a universe that was ...
In Einstein's day, the strong and the weak forces had not yet been discovered, yet he found the potential existence of two other distinct forces, gravity and electromagnetism, far more alluring. This launched his 40-year voyage in search of the so-called "unified field theory" that he hoped would show that these two forces are really ...
Having formulated what are now known as Einstein's equations (or, more precisely, his field equations of gravity), he presented his new theory of gravity at several sessions of the Prussian Academy of Sciences in late 1915, culminating in his final presentation on November 25, 1915. [15]