Search results
Results from the WOW.Com Content Network
From this measurement and the apparent magnitudes of both stars, the luminosities can be found, and by using the mass–luminosity relationship, the masses of each star. These masses are used to re-calculate the separation distance, and the process is repeated. The process is iterated many times, and accuracies as high as 5% can be achieved. [8]
In astrophysics and physical cosmology the mass-to-light ratio, normally designated with the Greek letter upsilon, ϒ, [1] is the quotient between the total mass of a spatial volume (typically on the scales of a galaxy or a cluster) and its luminosity.
Ned Wright's cosmology calculator calculates a luminosity distance for a redshift of 1 to be 6701 Mpc = 2×10 26 m giving a radio luminosity of 10 −26 × 4 π (2×10 26) 2 / (1 + 1) (1 + 2) = 6×10 26 W Hz −1. To calculate the total radio power, this luminosity must be integrated over the bandwidth of the emission.
In astronomy, the Tully–Fisher relation (TFR) is a widely verified empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. Since the observed brightness of a galaxy is distance-dependent, the relationship can be used to estimate distances to galaxies from ...
In astronomy, absolute magnitude (M) is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale; the more luminous (intrinsically bright) an object, the lower its magnitude number.
brightest (luminosity distance of 2.4 billion light-years) +13.42: moon Triton: seen from Earth Maximum brightness [61] +13.65: dwarf planet Pluto: seen from Earth maximum brightness, [66] 725 times fainter than magnitude 6.5 naked eye skies +13.9 moon Titania: seen from Earth Maximum brightness; brightest moon of Uranus +14.1 star WR 102: seen ...
In that situation the combined mass of the positive–negative charge carrier pair is approximately 918 times smaller (half of the proton-to-electron mass ratio), while the radiation pressure on the positrons doubles the effective upward force per unit mass, so the limiting luminosity needed is reduced by a factor of ≈ 918×2.
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...