enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator. [2] [10]

  3. Equatorial bulge - Wikipedia

    en.wikipedia.org/wiki/Equatorial_bulge

    The difference of 0.0178 m/s 2 between the gravitational acceleration at the poles and the true gravitational acceleration at the Equator is because objects located on the Equator are about 21 km (13 mi) further away from the center of mass of the Earth than at the poles, which corresponds to a smaller gravitational acceleration.

  4. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    When the rotational component is included (as above), the gravity at the equator is about 0.53% less than that at the poles, with gravity at the poles being unaffected by the rotation. So the rotational component of change due to latitude (0.35%) is about twice as significant as the mass attraction change due to latitude (0.18%), but both ...

  5. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Earth's gravity is a bit stronger at the poles than at the equator, because the Earth is not a perfect sphere, so an object at the poles is slightly closer to the center of the Earth than one at the equator; this effect combines with the centrifugal force to produce the observed weight difference. [20]

  6. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.

  7. Clairaut's theorem (gravity) - Wikipedia

    en.wikipedia.org/wiki/Clairaut's_theorem_(gravity)

    [4] [5] This indicated the acceleration of gravity was less at Cayenne than at Paris. Pendulum gravimeters began to be taken on voyages to remote parts of the world, and it was slowly discovered that gravity increases smoothly with increasing latitude, gravitational acceleration being about 0.5% greater at the poles than at the equator.

  8. Earth’s magnetic north pole is on the move, and scientists ...

    www.aol.com/news/earth-magnetic-north-pole-move...

    The scientists released two models on December 17: the standard WMM, with a spatial resolution of approximately 2,051 miles (3,300 kilometers) at the equator, and the first high-resolution model ...

  9. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).