enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction coordinate - Wikipedia

    en.wikipedia.org/wiki/Reaction_coordinate

    In chemistry, a reaction coordinate [1] is an abstract one-dimensional coordinate chosen to represent progress along a reaction pathway. Where possible it is usually a geometric parameter that changes during the conversion of one or more molecular entities, such as bond length or bond angle. For example, in the homolytic dissociation of ...

  3. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.

  4. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    According to transition state theory, the smallest fraction of the catalytic cycle is spent in the most important step, that of the transition state. The original proposals of absolute reaction rate theory for chemical reactions defined the transition state as a distinct species in the reaction coordinate that determined the absolute reaction rate.

  5. Heterogeneous catalysis - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_catalysis

    Reaction Coordinate. (A) Uncatalyzed (B) Catalyzed (C) Catalyzed with discrete intermediates (transition states) Most metal surface reactions occur by chain propagation in which catalytic intermediates are cyclically produced and consumed. [8] Two main mechanisms for surface reactions can be described for A + B → C. [2]

  6. Catalytic triad - Wikipedia

    en.wikipedia.org/wiki/Catalytic_triad

    A catalytic triad is a set of three coordinated amino acid residues that can be found in the active site of some enzymes. [1] [2] Catalytic triads are most commonly found in hydrolase and transferase enzymes (e.g. proteases, amidases, esterases, acylases, lipases and β-lactamases).

  7. Tsuji–Trost reaction - Wikipedia

    en.wikipedia.org/wiki/Tsuji–Trost_reaction

    The Tsuji–Trost reaction (also called the Trost allylic alkylation or allylic alkylation) is a palladium-catalysed substitution reaction involving a substrate that contains a leaving group in an allylic position. The palladium catalyst first coordinates with the allyl group and then undergoes oxidative addition, forming the π-allyl

  8. Chemical reaction network theory - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction_network...

    While stable periodic solutions are unusual in real-world chemical reaction networks, well-known examples exist, such as the Belousov–Zhabotinsky reactions. The simplest catalytic oscillator (nonlinear self-oscillations without autocatalysis) can be produced from the catalytic trigger by adding a "buffer" step. [23]

  9. Murai reaction - Wikipedia

    en.wikipedia.org/wiki/Murai_reaction

    Early examples of the reaction suffered from side products of alkylation at both ortho positions. This problem can be partially solved using an ortho methyl blocking group. Unfortunately, with ortho methyl groups both the rate and generality of the reaction are reduced. [3] Substituents at the meta position influence regioselectivity. [8]