Search results
Results from the WOW.Com Content Network
The top and bottom example may be considered structurally equivalent, depending on the effective stiffness of the spring and beam element. A cantilever is a rigid structural element that extends horizontally and is unsupported at one end. Typically it extends from a flat vertical surface such as a wall, to which it must be firmly attached.
The cantilever method is an approximate method for calculating shear forces and moments developed in beams and columns of a frame or structure due to lateral loads. The applied lateral loads typically include wind loads and earthquake loads, which must be taken into consideration while designing buildings.
Another important class of problems involves cantilever beams. The bending moments ( M {\displaystyle M} ), shear forces ( Q {\displaystyle Q} ), and deflections ( w {\displaystyle w} ) for a cantilever beam subjected to a point load at the free end and a uniformly distributed load are given in the table below.
Likewise the normal convention for a positive bending moment is to warp the element in a "u" shape manner (Clockwise on the left, and counterclockwise on the right). Another way to remember this is if the moment is bending the beam into a "smile" then the moment is positive, with compression at the top of the beam and tension on the bottom. [1]
A cantilever Timoshenko beam under a point load at the free end For a cantilever beam , one boundary is clamped while the other is free. Let us use a right handed coordinate system where the x {\displaystyle x} direction is positive towards right and the z {\displaystyle z} direction is positive upward.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.
The conventional engineer's sign convention is used here, i.e. positive moments cause elongation at the bottom part of a beam member. For comparison purposes, the following are the results generated using a matrix method. Note that in the analysis above, the iterative process was carried to >0.01 precision.
In general, exact solutions for cantilever plates using plate theory are quite involved and few exact solutions can be found in the literature. Reissner and Stein [ 7 ] provide a simplified theory for cantilever plates that is an improvement over older theories such as Saint-Venant plate theory.