Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
The efficiency of addressing of memory depends on the bit size of the bus used for addresses – the more bits used, the more addresses are available to the computer. For example, an 8-bit-byte-addressable machine with a 20-bit address bus (e.g. Intel 8086) can address 2 20 (1,048,576) memory locations, or one MiB of memory, while a 32-bit bus ...
The CPU in modern computer hardware performs reads and writes to memory most efficiently when the data is naturally aligned, which generally means that the data's memory address is a multiple of the data size. For instance, in a 32-bit architecture, the data may be aligned if the data is stored in four consecutive bytes and the first byte lies ...
When byte processing is to be a significant part of the workload, it is usually more advantageous to use the byte, rather than the word, as the unit of address resolution. Address values which differ by one designate adjacent bytes in memory. This allows an arbitrary character within a character string to be addressed straightforwardly.
In computer architecture, word addressing means that addresses of memory on a computer uniquely identify words of memory. It is usually used in contrast with byte addressing, where addresses uniquely identify bytes. Almost all modern computer architectures use byte addressing, and word addressing is largely only of
In the simplest scheme, an address, or a numeric index, is assigned to each unit of memory in the system, where the unit is typically either a byte or a word – depending on whether the architecture is byte-addressable or word-addressable – effectively transforming all of memory into a very large array.
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
In many computer architectures, the byte is the smallest addressable unit, the atom of addressability, say. For example, even though 64-bit processors may address memory sixty-four bits at a time, they may still split that memory into eight-bit pieces. This is called byte-addressable memory.