enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Codes for electromagnetic scattering by spheres - Wikipedia

    en.wikipedia.org/wiki/Codes_for_electromagnetic...

    Year Name Authors References Language Short Description 1983 BHMIE [3]: Craig F. Bohren and Donald R. Huffman [1]Fortran IDL Matlab C Python "Mie solutions" (infinite series) to scattering, absorption and phase function of electromagnetic waves by a homogeneous sphere.

  4. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies ⁡ [(())] ⁡ [⁡ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...

  5. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    More frequently used symbols will be assigned a shorter code. For example, suppose we have the following non-canonical codebook: A = 11 B = 0 C = 101 D = 100 Here the letter A has been assigned 2 bits, B has 1 bit, and C and D both have 3 bits. To make the code a canonical Huffman code, the codes are renumbered

  6. Arithmetic coding - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_coding

    When naively Huffman coding binary strings, no compression is possible, even if entropy is low (e.g. ({0, 1}) has probabilities {0.95, 0.05}). Huffman encoding assigns 1 bit to each value, resulting in a code of the same length as the input. By contrast, arithmetic coding compresses bits well, approaching the optimal compression ratio of

  7. Tunstall coding - Wikipedia

    en.wikipedia.org/wiki/Tunstall_coding

    Thus the efficiency of the read is 2.75 ( average length of the size 7 Huffman code ) / 1.75 ( average length of the 1 or 2-digit base - 3 Tunstall code ) = which is as per requirement very close to ⁡ = which calculates to an efficiency of %. We can then transmit the symbols using base-3 channels efficiently.

  8. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  9. Asymmetric numeral systems - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_numeral_systems

    If symbols are assigned in ranges of lengths being powers of 2, we would get Huffman coding. For example, a->0, b->100, c->101, d->11 prefix code would be obtained for tANS with "aaaabcdd" symbol assignment. Example of generation of tANS tables for m = 3 size alphabet and L = 16 states, then applying them for stream decoding.