enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Package-merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Package-merge_algorithm

    The package-merge algorithm is an O(nL)-time algorithm for finding an optimal length-limited Huffman code for a given distribution on a given alphabet of size n, where no code word is longer than L. It is a greedy algorithm , and a generalization of Huffman's original algorithm .

  4. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    Canonical Huffman codes address these two issues by generating the codes in a clear standardized format; all the codes for a given length are assigned their values sequentially. This means that instead of storing the structure of the code tree for decompression only the lengths of the codes are required, reducing the size of the encoded data.

  5. Adaptive Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Adaptive_Huffman_coding

    Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.

  6. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    The two codes (the 288-symbol length/literal tree and the 32-symbol distance tree) are themselves encoded as canonical Huffman codes by giving the bit length of the code for each symbol. The bit lengths are themselves run-length encoded to produce as compact a representation as possible. As an alternative to including the tree representation ...

  7. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies ⁡ [(())] ⁡ [⁡ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...

  8. Shannon–Fano coding - Wikipedia

    en.wikipedia.org/wiki/Shannon–Fano_coding

    Shannon–Fano codes are suboptimal in the sense that they do not always achieve the lowest possible expected codeword length, as Huffman coding does. [1] However, Shannon–Fano codes have an expected codeword length within 1 bit of optimal. Fano's method usually produces encoding with shorter expected lengths than Shannon's method.

  9. Asymmetric numeral systems - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_numeral_systems

    If symbols are assigned in ranges of lengths being powers of 2, we would get Huffman coding. For example, a->0, b->100, c->101, d->11 prefix code would be obtained for tANS with "aaaabcdd" symbol assignment. Example of generation of tANS tables for m = 3 size alphabet and L = 16 states, then applying them for stream decoding.