enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  4. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    The term spin matrix refers to a number of matrices, ... Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices; Gamma matrices, ...

  5. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    Multi-qubit Pauli matrices can be written as products of single-qubit Paulis on disjoint qubits. Alternatively, when it is clear from context, the tensor product symbol can be omitted, i.e. unsubscripted Pauli matrices written consecutively represents tensor product rather than matrix product. For example:

  6. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    Suppose there is a spin 1/2 particle in a state = [].To determine the probability of finding the particle in a spin up state, we simply multiply the state of the particle by the adjoint of the eigenspinor matrix representing spin up, and square the result.

  7. Concurrence (quantum computing) - Wikipedia

    en.wikipedia.org/wiki/Concurrence_(Quantum...

    Alternatively, the 's represent the square roots of the eigenvalues of the non-Hermitian matrix ~. [2] Note that each λ i {\displaystyle \lambda _{i}} is a non-negative real number. From the concurrence, the entanglement of formation can be calculated.

  8. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    From linear algebra one knows that a certain matrix can be represented in another basis through the transformation ′ = where is the basis transformation matrix. If the vectors b {\displaystyle b} respectively c {\displaystyle c} are the z-axis in one basis respectively another, they are perpendicular to the y-axis with a certain angle t ...

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.