Search results
Results from the WOW.Com Content Network
The way in which the significand (including its sign) and exponent are stored in a computer is implementation-dependent. The common IEEE formats are described in detail later and elsewhere, but as an example, in the binary single-precision (32-bit) floating-point representation, p = 24 {\displaystyle p=24} , and so the significand is a string ...
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in
The sign bit determines the sign of the number, which is the sign of the significand as well. The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero.
Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...
Mantissa (/ m æ n ˈ t ɪ s ə /) may refer to: Mantissa (logarithm) , the fractional part of the common (base-10) logarithm Significand (also commonly called mantissa), the significant digits of a floating-point number or a number in scientific notation
Sign bit: 1 bit; Exponent width: 5 bits; Significand precision: 11 bits (10 explicitly stored) The format is laid out as follows: The format is assumed to have an implicit lead bit with value 1 unless the exponent field is stored with all zeros. Thus, only 10 bits of the significand appear in the memory format but the total precision is 11 bits.
A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).