enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  3. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in ordinary decimal notation.

  4. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    The arithmetical difference between two consecutive representable floating-point numbers which have the same exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex , the ULP is 2×16 −8 , or 2 −31 .

  5. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi). [4]

  6. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .

  7. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  8. decimal64 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Decimal64_floating-point...

    - Different understanding of significand as integer or fraction, and acc. different bias to apply for the exponent (for decimal64 what is stored in bits can be decoded as base to the power of 'stored value for the exponent minus bias of 383' times significand understood as d 0. d −1 d −2 d −3 d −4 d −5 d −6 d −7 d −8 d −9 d ...

  9. Microsoft Binary Format - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Binary_Format

    MBF numbers consist of an 8-bit base-2 exponent, a sign bit (positive mantissa: s = 0; negative mantissa: s = 1) and a 23-, [43] [8] 31-[8] or 55-bit [43] mantissa of the significand. There is always a 1-bit implied to the left of the explicit mantissa, and the radix point is located before this assumed bit.