enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data structure - Wikipedia

    en.wikipedia.org/wiki/Data_structure

    A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.

  3. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.

  4. Rope (data structure) - Wikipedia

    en.wikipedia.org/wiki/Rope_(data_structure)

    In computer programming, a rope, or cord, is a data structure composed of smaller strings that is used to efficiently store and manipulate longer strings or entire texts. For example, a text editing program may use a rope to represent the text being edited, so that operations such as insertion, deletion, and random access can be done efficiently.

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    Note that the function does not use keys, which means that the sequential structure is completely recorded by the binary search tree’s edges. For traversals without change of direction, the ( amortised ) average complexity is O ( 1 ) , {\displaystyle {\mathcal {O}}(1),} because a full traversal takes 2 n − 2 {\displaystyle 2n-2} steps for a ...

  6. Comparison of data structures - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_data_structures

    Here are time complexities [5] of various heap data structures. The abbreviation am. indicates that the given complexity is amortized, otherwise it is a worst-case complexity. For the meaning of "O(f)" and "Θ(f)" see Big O notation. Names of operations assume a max-heap.

  7. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    When the algorithm completes, prev[] data structure describes a graph that is a subset of the original graph with some edges removed. Its key property is that if the algorithm was run with some starting node, then every path from that node to any other node in the new graph is the shortest path between those nodes graph, and all paths of that ...

  8. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  9. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    For a graph with E edges and V vertices, Kruskal's algorithm can be shown to run in time O(E log E) time, with simple data structures. Here, O expresses the time in big O notation , and log is a logarithm to any base (since inside O -notation logarithms to all bases are equivalent, because they are the same up to a constant factor).