Search results
Results from the WOW.Com Content Network
Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y 3 Al 5 O 12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant , neodymium in the +3 oxidation state, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are ...
The success of the Nd 3+ ion lies in the structure of its energy levels and in the spectroscopic properties suitable for the generation of laser radiation. In 1964 Geusic et al. [68] demonstrated the operation of neodymium ion in YAG matrix Y 3 Al 5 O 12. It is a four-level laser with lower threshold and with excellent mechanical and ...
The type of pump source used principally depends on the gain medium, and this also determines how the energy is transmitted to the medium. A helium–neon (HeNe) laser uses an electrical discharge in the helium-neon gas mixture, a Nd:YAG laser uses either light focused from a xenon flash lamp or diode lasers, and excimer lasers use a chemical ...
Laser rods (from left to right): Ruby, alexandrite, Er:YAG, Nd:YAG. A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. [1] Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called ...
Blue DPSSLs use a nearly identical process, except that the 808 nm light is being converted by an Nd:YAG crystal to 946 nm light (selecting this non-principal spectral line of neodymium in the same Nd-doped crystals), which is then frequency-doubled to 473 nm by a beta barium borate (BBO) crystal or LBO crystal. Because of the lower gain for ...
Laser rods (from left to right): Ruby, Alexandrite, Er:YAG, Nd:YAG The active laser medium (also called a gain medium or lasing medium ) is the source of optical gain within a laser . The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously ...
Neodymium-doped yttrium calcium oxoborate Nd:Y Ca 4 O(BO 3) 3 or simply Nd:YCOB ~1.060 μm (~530 nm at second harmonic) laser diode Nd:YCOB is a so-called "self-frequency doubling" or SFD laser material which is both capable of lasing and which has nonlinear characteristics suitable for second harmonic generation. Such materials have the ...
The neodymium (Nd) and neodymium yttrium-aluminium-garnet lasers are identical in style and differ only in the application. Nd is used for boring and where high energy but low repetition are required. The Nd:YAG laser is used where very high power is needed and for boring and engraving. Both CO 2 and Nd/Nd:YAG lasers can be used for welding. [13]