Search results
Results from the WOW.Com Content Network
It is estimated there are more than 10 31 bacteriophages on the planet, more than every other organism on Earth, including bacteria, combined. [3] Viruses are the most abundant biological entity in the water column of the world's oceans, and the second largest component of biomass after prokaryotes, [4] where up to 9x10 8 virions per millilitre ...
Most of these viruses are bacteriophages which infect and destroy marine bacteria and control the growth of phytoplankton at the base of the marine food web. Bacteriophages are harmless to plants and animals but are essential to the regulation of marine ecosystems. They supply key mechanisms for recycling ocean carbon and nutrients.
The herpes virus can then exit this dormant stage and re-enter the lytic cycle, causing disease symptoms. Thus, while herpes viruses can enter both the lytic and lysogenic cycles, latency allows the virus to survive and evade detection by the immune system due to low viral gene expression. The model organism for studying lysogeny is the lambda ...
Bacteriophages, often just called phages, are viruses that parasite bacteria and archaea. Marine phages parasite marine bacteria and archaea, such as cyanobacteria . [ 38 ] They are a common and diverse group of viruses and are the most abundant biological entity in marine environments, because their hosts, bacteria, are typically the ...
Climate change and increasing temperatures will also impact the health of wildlife animals as well. Specifically, climate change will impact wildlife disease, specifically affecting "geographic range and distribution of wildlife diseases, plant and animal phenology, wildlife host-pathogen interactions, and disease patterns in wildlife". [94]
Due to the implications of climate change, it is suspected that plants will have increased susceptibility to pathogens. [8] Additionally, elevated threat of abiotic stresses (i.e. drought and heat ) are likely to contribute to plant pathogen susceptibility.
Several bacteriophages contain toxin genes that become incorporated into the host bacteria genome through infection and render the bacteria toxic. [9] Many well known bacterial toxins are produced from specific strains of the bacteria species that have obtained toxigenicity through lysogenic conversion, pseudolysogeny, or horizontal gene ...
Plants have evolved R genes (resistance genes) whose products mediate resistance to specific virus, bacteria, oomycete, fungus, nematode or insect strains. R gene products are proteins that allow recognition of specific pathogen effectors, either through direct binding or by recognition of the effector's alteration of a host protein. [ 6 ]