Search results
Results from the WOW.Com Content Network
The following algorithm is a description of the Jacobi method in math-like notation. It calculates a vector e which contains the eigenvalues and a matrix E which contains the corresponding eigenvectors; that is, e i {\displaystyle e_{i}} is an eigenvalue and the column E i {\displaystyle E_{i}} an orthonormal eigenvector for e i {\displaystyle ...
In mathematics, the Jacobi method for complex Hermitian matrices is a generalization of the Jacobi iteration method. The Jacobi iteration method is also explained in "Introduction to Linear Algebra" by Strang (1993).
Specifically, if the eigenvalues all have real parts that are negative, then the system is stable near the stationary point. If any eigenvalue has a real part that is positive, then the point is unstable. If the largest real part of the eigenvalues is zero, the Jacobian matrix does not allow for an evaluation of the stability. [12]
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.
Two-sided Jacobi SVD algorithm—a generalization of the Jacobi eigenvalue algorithm—is an iterative algorithm where a square matrix is iteratively transformed into a diagonal matrix. If the matrix is not square the QR decomposition is performed first and then the algorithm is applied to the R {\displaystyle R} matrix.
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then
Jacobi sum, a type of character sum; Jacobi method, a method for determining the solutions of a diagonally dominant system of linear equations; Jacobi eigenvalue algorithm, a method for calculating the eigenvalues and eigenvectors of a real symmetric matrix; Jacobi elliptic functions, a set of doubly-periodic functions