Search results
Results from the WOW.Com Content Network
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
A double negative is a construction occurring when two forms of grammatical negation are used in the same sentence. This is typically used to convey a different shade of meaning from a strictly positive sentence ("You're not unattractive" vs "You're attractive").
Within a system of classical logic, double negation, that is, the negation of the negation of a proposition , is logically equivalent to . Expressed in symbolic terms, . In intuitionistic logic, a proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation.
A double negation does not affirm the law of the excluded middle ; while it is not necessarily the case that PEM is upheld in any context, no counterexample can be given either. Such a counterexample would be an inference (inferring the negation of the law for a certain proposition) disallowed under classical logic and thus PEM is not allowed ...
A negative literal is the negation of an atom (e.g., ). The polarity of a literal is positive or negative depending on whether it is a positive or negative literal. In logics with double negation elimination (where ¬ ¬ x ≡ x {\displaystyle \lnot \lnot x\equiv x} ) the complementary literal or complement of a literal l {\displaystyle l} can ...
As a matter of logical inference, to transpose or convert the terms of one proposition requires the conversion of the terms of the propositions on both sides of the biconditional relationship, meaning that transposing or converting (P → Q) to (Q → P) requires that the other proposition, (¬Q → ¬P), to be transposed or converted to (¬P ...
Suppose we are given that .Then we have by the law of excluded middle [clarification needed] (i.e. either must be true, or must not be true).. Subsequently, since , can be replaced by in the statement, and thus it follows that (i.e. either must be true, or must not be true).
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas that are classically equivalent but intuitionistically inequivalent.